© 2024 WYPR
WYPR 88.1 FM Baltimore WYPF 88.1 FM Frederick WYPO 106.9 FM Ocean City
Play Live Radio
Next Up:
0:00
0:00
0:00 0:00
Available On Air Stations

RNA Treatment Used to Lower Cholesterol in Mice

Researchers have successfully used a technique that selectively shuts off genes to lower levels of LDL, or "bad" cholesterol, in mice. The findings, reported in the journal Nature, suggest that RNA interference may be a revolutionary development for medical science. NPR's Joe Palca reports.

RNA Interference: An Explainer

Genes are made up of chunks of DNA. Each gene contains the instructions to make a particular protein. Proteins do the work of our cells -- digesting food, releasing energy, sending signals to other cells.

To make a protein, another molecule called RNA (ribonucleic acid) reads the DNA instructions and then directs the protein's assembly. Think of RNA as a construction worker, who actually builds a house after reading an architect's drawings.

Most RNA is single stranded. Until 1998, researchers had thought only single-stranded RNA had an effect on gene expression. But recently, scientists discovered that relatively short, double-stranded RNA can be used to turn off certain genes -- without triggering a defensive response that results in cell suicide. This selective silencing of specific genes is called RNA interference, or RNAi.

In the Nov. 11, 2004, issue of Nature, scientists report they were able to use RNAi to lower cholesterol in mice. The researchers, affiliated with Massachusetts-based Alnylam Pharmaceuticals, used RNAi to turn off ApoB, the gene responsible for making the "bad" cholesterol known as LDL.

Copyright 2022 NPR. To see more, visit https://www.npr.org.

Joe Palca is a science correspondent for NPR. Since joining NPR in 1992, Palca has covered a range of science topics — everything from biomedical research to astronomy. He is currently focused on the eponymous series, "Joe's Big Idea." Stories in the series explore the minds and motivations of scientists and inventors. Palca is also the founder of NPR Scicommers – A science communication collective.